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ABSTRACT
This paper proposes a novel object matching algorithm based
on shape contours. In order to ensure low computational
complexity in shape representation, our descriptor is com-
posed by a small number of interest points which are gen-
erated by considering both curvatures and the overall shape
trend. To effectively describe each point of interest, we in-
troduce a simple and highly discriminative point descriptor,
namely Point Context, which represents its geometrical and
topological location. For shape matching, we observed that
the correspondences are not only dependent on the similari-
ties between these single points in different objects, but they
are also related to the geometric relations between multiple
points of interest in the same object. Therefore, a high-order
graph matching formulation is introduced to merge the sin-
gle point similarities and the similarities between point tri-
angles. The main contributions of this paper include (i) the
introduction of a novel shape descriptor with robust shape
points and their descriptors and (ii) the implementation of a
high-order graph matching algorithm that solves the shape
matching problem. Our method is validated through a series
of object retrieval experiments on four datasets demonstrat-
ing its robustness and accuracy.

Categories and Subject Descriptors
I.4.8 [Image Processing and Computer Vision]: Scene
Analysis; I.5.4 [Pattern Recognition]: Computer Vision;
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(a) Points of interest (b) Singleton potential

(c) Pairwise potential (d) Third-order potential

Figure 1: Different potentials for object matching.

1. INTRODUCTION
Object recognition is a process for identifying a specific

object in a digital image or video, useful for a number of
applications. Shape analysis plays a key role in understand-
ing or identifying objects in images [11, 13]. Contour-based
shape matching generally consists of two main processes,
shape representation and matching.

For the shape representation process, there are three main
challenges. The first challenge is how to extract efficient de-
scriptors that are invariant to shape rotation, translation
and scaling. The second one is how to extract appropri-
ate shape descriptors in images that are often noisy and/or
distorted. The third challenge is how to generate shape de-
scriptors with low computation complexity. In order to solve
these problems we represent the shape only with a small
number of interest points. We detect these points by con-
sidering both curvatures and the overall shape trend. Sec-
ondly, there is only a limited number of these points in each
object, which can reduce the computational complexity for
searching correspondences dramatically.

For the shape matching process, even using only the pro-
posed points of interest, several points are inevitably ex-
tracted regardless of their irrelevance to the matching pro-
cess (the right bone in Figure 1(a)). Moreover, some ex-
tracted points in the same object may have very similar geo-
metrical locations because of their small distances or symme-
try. However, most existing methods [10, 1, 6] only consider
the relationship between single points in different objects.
This could lead to ambiguous matching because many dif-
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ferent points may have similar descriptors [5, 13]. It has
been shown that high-order graph matching is a powerful
framework to establish feature correspondences, combining
both appearance similarity and geometric compatibility [12].
As shown in Figure 1(b), singleton point matching is a well-
know assignment problem. For the pairwise matching (Fig-
ure 1(c)), it finds consistent correspondences between two
sets of points, by taking in consideration both how well the
features’ descriptor match and how well their pairwise geo-
metric constraints are satisfied. For the high-order matching
(mostly third-order, see Figure 1(d)), it considers the cost of
matching three correspondences. With this observation, we
present a high-order graph matching strategy for improving
correspondences between our points of interest.

2. SHAPE DESCRIPTOR
In this section, we first describe the method that gen-

erates robust points of interest along the shape boundary.
After that, the point descriptor, namely point context, is in-
troduced and analysed. Finally, we construct the shape de-
scriptor with the interest points and their associated point
context features.

2.1 Points of Interest
In this section an approach [5] is employed on an arbitrary

given shape Ω to select boundary points pi which are sig-
nificant for the perceptual appearance. The general idea is
to detect contour regions like the legs or the tail of an ele-
phant characterised by a higher curvature toward the overall
shape trend. Therefore, either a single or multiple reference
points (xi) inside the shape are determined to compute the
distance between each single contour point and its closest
reference. By arranging these values sequentially, a signal s
is generated that can be used to detect peaks. The desired
subset of contour points is then obtained by assigning the
corresponding contour point to each peak.

2.2 Point Context
Inspired by [9, 8], for points of interest pi, (i = 1, . . . ,m),

we propose a point descriptor, Point Context, which can
intuitively capture its geometrical and topological locations.
We consider the set of vectors originating from pi to all other
sample points on a shape contour. These vectors express the
configuration of the entire shape relative to the reference
point. More specifically, let P denote a sequence of interest
points P = {p1, · · ·pm} and Q denote a finite number of
contour sample points Q = {q1, · · · , qn}, P 6∈ Q. All points
in P and Q are represented by their coordinate locations.
Points in Q are ordered clockwise along the shape contour.
For each single point of interest pi, we compute two vectors,
one presenting all distances and the second representing all
pairwise orientations of vectors from pi to each sample point
qk ∈ Q, (k = 1, · · · , n). A distance Dpi(k) from pi to qk is
defined as Euclidean distance in the log space

Dpi (k) = log(1 + ‖−→pi −−→qk‖2) . (1)

In order to avoid the situation where the input of log is zero,
we add one to Euclidean distance. An orientation Θpi(k)
from pi to qk is defined as the orientation of vector −→pi −−→qk:

Θpi (k) = atan2(−→pi −−→qk) . (2)

where atan2 stands for the four quadrant inverse tangent
which can ensure Θpi(k) ∈ [−π, π]. Together with the dis-

tances, a single point of interest pi is encoded in two n-
dimensional vectors Dpi and Θpi .

Our proposed point descriptor differs from the methods [5]
and [3] in the following aspects. Firstly, we only consider the
feature vectors from points of interest instead of roughly
uniform spacing or randomly picking for selecting sample
points. This strategy can reduce the mismatches and com-
putational complexity conspicuously. Secondly, the proposed
point descriptor is naturally translation and rotation invari-
ant 1. However, approaches in [5, 3] are not intrinsically
rotation invariant. In order to solve this problem, they use
the tangent angle on each point to turn the shape. This is
not robust enough for some points which have no reliable
tangents. Moreover, some local appearance features could
lose their discriminative power if the shape is rotated.

Eventually, based on our method, for a given arbitrary
shape Ω, its contour ∂Ω can be represented with the loca-
tions as well as the distance and orientation vectors of all
points of interest from the contour:

∂Ω = {pi, Dpi ,Θpi} . (3)

3. SHAPE MATCHING
In this section, we first formulate our shape matching

based on the properties of interest points and point con-
text features. The formulation is composed by potential
functions with different orders. After that, we introduce the
definitions of potential functions.

3.1 Formulation of Shape Matching
Let P1 and P2 denote the set of interest points from two

shapes S1 and S2 respectively. pi and p′j denote a single

point of interest in P1 and P2 respectively. P , P1 × P2

denotes the set of possible correspondences. We define the
Boolean indicator variable

xa =

{
1 if a = (pi,p

′
j) ∈ P is a correspondence

0 otherwise
. (4)

In our definition, a basic constraint is that each point pi in
P1 is mapped to at most one point p′j in P2, while for each
point p′j in P2 there is at most one point pi in P1 mapping
to it. Therefore, we have the set of feasible solutions:

ζ = {x ∈ {0, 1}P1×P2 |
∑

pi∈P1

xpi,p
′
j
6 1,

∑
p′
j∈P2

xpi,p
′
j
6 1,

∀pi ∈ P1 and ∀p′j ∈ P2}
. (5)

Inspired by [4, 14], our high-order (degree 3) matching
formulation is required to be as follows:

min
x∈ζ
{E(x|θ) =

∑
a∈P

θaxa +
∑

(a,b)∈P×P
θabxaxb+

∑
(a,b,c)∈P×P×P

θabcxaxbxc}
. (6)

where θa is the matching cost for each correspondence a ∈
P (Figure 1(b)), θab for a pair of correspondences (a, b) ∈
P × P (Figure 1(c)), and θabc for a triplet of correspon-
dences (a, b, c) ∈ P ×P ×P (Figure 1(d)). Since the match-
ing constraint in Eq. 5 makes the optimisation problem in
Eq. 6 difficult to solve, we employ the dual-decomposition
method [14] to re-formulate the original problem as the union
of several sub-problems that are easier to solve.
1Cooperating with Eq. 7, our descriptor is also scale invariant.
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3.2 Potential Functions
In this paper, we only consider the first and third order

terms since a triplet (Figure 1(d)) in one shape would have
fewer similar triplets in the other. Moreover, this strategy
can be used to avoid the over-fitting problem as the singleton
potentials still offer the major contribution for the shape
similarity with our proposed point context descriptors.

3.2.1 The Singleton Potential
In order to define the singleton potential θa, for each cor-

respondence (pi,p
′
j) we fully use the properties of its point

context features. Given two points of interest pi and p′j
from two shapes S1 and S2, respectively, we first compute
the affinity vectors between the corresponding elements in
their distance and orientation vectors:

AD(pi,p
′
j) = exp(−

(Dpi (k)−Dp′
j (k))2

(max(Dpi )σ)2
) . (7)

AΘ(pi,p
′
j) = exp(−

(Θpi (k)−Θp′
j (k))2

δ2
) . (8)

where σ and δ represent the tolerance of distance and orien-
tation differences, respectively. We set σ = 0.2 and δ = π/4
in all experiments. Like in Eq. 1, k = 1, · · · , n. To get a
scale invariant value of AD(pi,p

′
j), we divide each distance

difference by the maximum of the first distance vector.
Since both AD and AΘ are normalised, we can simply add

them to obtain the affinity vector:

A(pi,p
′
j) = AD(pi,p

′
j) +AΘ(pi,p

′
j) . (9)

Observing that A is a n−dimensional vector representing
the similarities of corresponding pairs from pi and p′j . The
similarity between pi and p′j can be calculated by the mean
value of A(pi,p

′
j). Consequently, the singleton potential for

a correspondence (pi,p
′
j) is defined as

θa = θpi,p
′
j

=
1

n

n∑
k=1

A(k) . (10)

3.2.2 The High-Order Potential
In this paper, we treat the third-order (triangle in Fig-

ure 1(d)) as the high-order potentials. The angles of a tri-
angle are scale and rotation invariant. Thus we can describe
each triangle by its three angles. In practice, we describe
each triangle by the sine of its three angles to speed-up the
computation. Suppose that P1 and P2 are the set of interest
points for two shapes S1 and S2, respectively. For any two
triplets, (p1

i ,p
1
j ,p

1
k) ∈ S1 and (p2

i ,p
2
j ,p

2
k) ∈ S2, the triple

potential for each possible triple matching (p1
i ,p

1
j ,p

1
k) →

(p2
i ,p

2
j ,p

2
k) is defined with a truncated Gaussian kernel:

θabc = θp1
i ,p

1
j ,p

1
k
,p2

i ,p
2
j ,p

2
k

={
exp(−γ‖fi1,j1,k1−fi2,j2,k2‖2) if ‖fi1,j1,k1−fi2,j2,k2‖6ϑ
0 otherwise

(11)

where fi1,j1,k1 and fi2,j2,k2 are the feature vectors (sine)
describing the triplets (p1

i ,p
1
j ,p

1
k) and (p2

i ,p
2
j ,p

2
k), respec-

tively. Points in both triplets are ordered in a clockwise
fashion with the singleton potential pair as its starting point
p1
i and p2

i . We use the truncated Gaussian kernel to scat-
ter and reduce matching times since the number of possible
triple matching is huge and it is not necessary to compute

them completely. In this paper, we take γ = 2 in our ex-
periment. With Eq. 11, for each tuple i of P1, we find the
features of P2 in a neighbourhood of size ϑ (ϑ = 350 in
our experiment). Based on [4] we only sample 20 triangles
per points in P1 since this number of triangles is more than
enough to obtain a robust matching. Then, we sample all
the possible triangles of P2, and compute their descriptors.
We employ a kd-tree to store them efficiently.

4. EXPERIMENTAL RESULTS
In this section we first evaluate the proposed interest point

detector and point context feature independently in several
shape retrieval experiments. After that, we evaluate and
compare the performance of the proposed matching method
with some traditional point matching methods to illustrate
our advantages. In the object retrieval experiments, for each
of the shapes used as a query, we have checked whether
the retrieved results are correct, i.e., belong to the same
class as the query. For quantitative comparison, we kept
the experimental convention proposed in [1] and considered
the 10 best matches for each query.

4.1 Evaluation of Interest Point Detection
In this subsection, we compare the retrieval performances

on Kimia216 [1] dataset using interest points detected by
the proposed method and the most related DCE [7] method.
Based on the generated interesting points, we compare their
retrieval performances using both shape context method [3]
and our proposed matching method. Both methods use the
same point descriptor and the match algorithm, except the
interest point detector. As shown in Table 1, retrieval results
based on the proposed interesting point detector perform
better in both methods. The main reason is the property
of interesting points generated by DCE method is highly re-
lated to the stop parameter k (DCE results are collected with
k = 10 which got the best retrieval result for comparison).
Obviously, it is impractical to set appropriate k manually
on each object. On the contrary, our method can generate
stable interesting points without degree parameters.

SC [3] 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
IP1 [7] 216 210 195 184 181 172 161 146 148 128

IP2 216 212 206 197 191 190 186 186 183 171

PC 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
IP1 [7] 216 211 205 196 192 191 186 178 177 175

IP2 216 212 211 211 205 200 201 195 193 195

Table 1: Experimental comparison on Kimia216 dataset. Inter-
esting points are detected separately using the proposed method
(IP2) and the DCE [7] method (IP1). IP1 and IP2 are then
compared using Shape Context (SC) [3] and the proposed Point
Context (PC) matching methods.

4.2 Evaluation of Point Context
In order to evaluate the performance of point context de-

scriptor, we compare the retrieval performance using Point
Context to other most related descriptors in [3, 5] on MPEG400
dataset. The shapes in this dataset have much larger intra-
class variations and inter-class similarities than the MPEG7.
Except descriptors, all performances are obtained using the
same interest points based on our proposed method and
matched by the Hungarian algorithm. As illustrated in Ta-
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ble 2, the point context feature achieves the best perfor-
mance among three descriptors.

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
SC [3] 370 343 310 302 277 272 265 264 239 240

PCCS [5] 377 351 336 331 317 302 287 282 273 262
Our 391 377 372 364 356 343 338 319 304 276

Table 2: Experimental comparison of our point context descrip-
tor to the Shape Context (SC) [3] and partition points-based de-
scriptors (PCCS) [5] using the interesting points generated by our
proposed method on MPEG400 dataset. The matching algorithm
on all the three methods are Hungarian algorithm.

4.3 Evaluation of High-Order Matching
In this part, with some objects from Kimia99 [2] dataset,

we first evaluate the matching performance of the proposed
high-order graph matching to the traditional Hungarian match-
ing method. The interesting points in both matching meth-
ods are generated and represented by the proposed method.
After that, we compare the proposed matching method against
the state-of-art method in [5] with the same objects. In Fig-
ure 2, we match two hands with some deformations among
their fingers. Since there are more interesting points in the
left hand than the right one, with our basic constraint in
Section 3.1, some points in the left hand will be jumped.

As shown in Figure 2(a), there are some mismatched inter-
esting points because of the similar points in both shapes.
Moreover, the geometrical relations among the interesting
points are not considered. Figure 2(b) shows that the pro-
posed high-order potentials yield apparently better match-
ing. In Figure 2(c), based on human perception there are
several mismatched points. Similar to hands, this is due to
their symmetric silhouette and there are also many similar
points in one object which could affect the matching perfor-
mance. In contrast, as shown in Figure 2(d), with the point
context feature and our proposed potentials, all points in
the left tool can find its correspondences correctly.

(a) Hungarian Matching (b) High-order Matching

(c) Result in [5] (d) Our method

Figure 2: Object matching with different potentials and com-
paring the matching result of the proposed method to [5].

5. CONCLUSION
In this paper, a novel shape matching method based on

the point context descriptors and high-order graph matching

is presented. The main idea is to generate some interesting
points on each shape contour for correspondence matching.
The generated interesting points are robust for shape defor-
mation. For each interesting point, we propose a point de-
scriptor, point context, to capture its geometrical locations.
In order to involve not only the singleton assignments, but
also the geometrical relations of tribes with different inter-
esting points for shape matching, we propose potentials for
the singleton and triplet terms.
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