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ABSTRACT

In this paper we introduce an approach for object retrieval that

uses contour segment matching for shape similarity computa-

tion. The object contour is partitioned into segments by skele-

ton endpoints. Each contour segment is represented by a ro-

tation and scale invariant, 12-dimensional feature vector. The

similarity of two objects is determined by matching their con-

tour segments using the Hungarian algorithm. Our method

is insensitive to object deformation and outperforms existing

shape-based object retrieval algorithms. The most significant

scientific contributions of this paper include (i) the introduc-

tion of a new feature extraction technique for contour seg-

ments as well as (ii) a new similarity measure for contour

segments cleverly modelling the human perception and easily

adapting to concrete application domains, and (iii) the impres-

sive robustness of the method in an object retrieval scenario.

Index Terms— Object Retrieval, Shape Similarity, Con-

tour Matching.

1. INTRODUCTION

Shape is a very important object property being perceptu-

ally unique due to the fact that it is both complex and struc-

tured. Shapes are perceived veridically and are the only per-

ceptual attributes of objects that allow unambiguous classifi-

cation [1]. Estimating similarities of object shapes belongs to

the most common unconscious human activity. Humans pro-

cess shapes using a huge knowledge database of prior expe-

riences and taking into account the surrounding environment.

For instance, a horse and a cat become, for humans, less sim-

ilar to each other, if a dog suddenly appears in the scene and

chases away a stork. Moreover, humans unconsciously con-

sider both the outer contour and the topology of an object for

categorisation. However, it is really difficult to imitate the

amazing human shape interpretation and abstraction capabil-

ities with computer-based algorithms.

The contribution of this article reacts to this problem. We

introduce a contour segment descriptor together with a corre-
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sponding similarity measure that does not only consider two

contour segments isolated from the environment. The similar-

ity to neighbouring object contour segments is also taken into

account. Further, the similarity function is able to integrate

background knowledge about a certain context into the calcu-

lation process. For this, all dimensions of the feature space

describing contour segments are weighted by coefficients that

are automatically learnt based on a small subset of images

from a certain application domain.

The rest of the paper is structured as follows: related work

(Section 2), shape representation (Section 3), object matching

(Section 4), experiments and results (Section 5), and conclu-

sion (Section 6).

2. RELATED WORK

Shape Modelling by Contours and Skeletons: Bai et al. [2]

combine the object contour and skeleton properties for shape

classification. They extract contour segments using the Dis-

crete Curve Evolution [3]. However, their approach works

in a supervised pattern recognition mode and multiple train-

ing examples of an object class are necessary for modelling.

Zeng et al. [4] combine properties of skeletons and boundaries

for general shape decomposition. Unfortunately, this method

is rotation variant and highly sensitive to shape deformation.

In [5], Bai et al. introduce a shape-based algorithm for detect-

ing and recognising non-rigid objects from natural images.

The skeleton is used to capture the main structure of an ob-

ject. Each branch on the skeleton models the object boundary

information, however, the real combination of skeleton and

contour properties has not been foreseen in this algorithm.

Contour-Based Shape Modelling: Nguyen et al. [6] pro-

pose a shape-based local binary descriptor for object detec-

tion that has been tested in the task of detecting humans from

static images. In [7], an algorithm for partial shape match-

ing with mildly non-rigid deformations using Markov chains

and the Monte Carlo method is introduced. Shotton et al. [8]

present a categorical object detection scheme that uses only

local contour-based features and is realised in a partly super-

vised learning framework. In [9], an approach for contour-

based object detection using a contour model for a class of
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objects is described. The model is hierarchically decomposed

into fragments and a global similarity measure is applied for

object detection. Yang et al. [10] formulate the contour-based

object detection as a matching problem between model con-

tour parts and image edge fragments. They treat this prob-

lem as the task of finding dominant sets in weighted graphs.

Though insensitive to noise and outliers, the approach is not

rotation invariant.

Skeleton-Based Shape Modelling: Compared to contour

matching methods, skeleton matching approaches feature

lower sensitivity to occlusion, limb growth, and articula-

tion [11]. However, they are computationally more com-

plex [12] and still have not yet been fully successfully applied

to real images. Baseski et al. [13] present a tree-edit-based

shape matching method that uses a recent coarse skeleton

representation. Their dissimilarity measure gives a better

understanding within group versus between group separation

which mimics the asymmetric nature of human similarity

judgements. To the best of our knowledge, the best per-

forming skeleton-based object matching algorithm has been

proposed by Bai et al. [14]. Their main idea is to match

skeleton graphs by comparing the geodesic paths between

skeleton endpoints. Unfortunately, the performance of this

method is limited to the presence of large protrusions, since

they require skipping a large number of skeleton endpoints.

3. OBJECT REPRESENTATION

To represent the shape and the topology of an object, its

outer contour and its skeleton are determined first, whereas,

for skeletonisation, contour partitioning with Discrete Curve

Evolution (DCE) [3] is employed. The representation model

based on skeletons follows [3], the object contour representa-

tion is described below.

First, the object contour is divided into N Contour

Segments (CS) by the skeleton endpoints. For each CS a

12-dimensional meaningful feature vector c
′

n is extracted,

whereas its first element is equal to the number of contour

segments resulting from the whole object (c′n,1 = N ). Eu-

clidean distance of contour segment endpoints and the total

number of pixels in a CS determine c′n,2 and c′n,3, respec-

tively. These two features are able to express how much a

contour segment differs from a straight line. In order to dis-

tinguish contour segments of the type presented in Figure 1a

from those of the type depicted in Figure 1b, the area between

the straight line connecting the CS endpoints and the contour

segment itself (marked as grey in Figure 1) is used as the

fourth feature (c′n,4).

Before computing remaining features, each CS is trans-

formed into a normalised vertical orientation (i.e., so that

its endpoints are vertically aligned) to ensure rotation in-

variance of the object contour representation (see Figure 2).

From the two possible results of such a normalising trans-

form, the CS with the majority of points lying on the right

(a) (b)

Fig. 1: Since c′n,2 and c′n,3 are equal for contour segments

(a) and (b), a fourth feature c′n,4 corresponding to the area

depicted in grey is introduced.

side of the straight line connecting its endpoints is se-

lected for further processing. For computing further features

c′n,5, c
′

n,6, . . . , c
′

n,12, we use the bounding box of the whole

CS as well as the three equally high sub-boxes shown in

Figure 2:

c′n,5 = hn

wn

c′n,6 =
hn,1

wn,1

c′n,7 =
hn,2

wn,2

c′n,8 =
hn,3

wn,3

c′n,9 =
wn,3hn,3

wn,1hn,1

c′n,10 =
wn,2hn,2

wn,1hn,1

c′n,11 = αn c′n,12 = βn

. (1)

wn

hn

wn,1

wn,2

wn,3
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Fig. 2: CS bounding box and equally high sub-boxes (hn,1 =
hn,2 = hn,3) used for feature extraction: An → Dn is ori-

ented vertically; Bn, An, and Cn are centre pixels of the top,

middle, and bottom contour sub-segments, respectively.

Finally, we divide the elements of the feature vector by a

half of the bounding box perimeter for scale invariance:

cn =
c
′

n

wn + hn

= (cn,1, cn,2, . . . , cn,12)
T

. (2)

The whole object contour can now be represented as a set of

feature vectors describing its contour segments:

C = {c1, c2, . . . , cn . . . , cN} . (3)

For simplification, in the following we do not differentiate

between object contours and their representationsC as well as

between contour segments and the feature vectors describing

them cn.
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Fig. 3: Example shapes from the experimental datasets: Kimia-216 (1st row), MPEG-400 (2nd row), and EM-200 (3rd row).

4. OBJECT MATCHING

The matching of two objects including the computation of

their similarity is performed separately for their skeleton and

contour representations. While the skeleton-based matching

follows [14], the matching and similarity computation based

on the contour segments is described below.

Similarity of Object Contours: First, we arrange the con-

tour segments of both objects in a clockwise way so that the

objects can be represented by ordered lists of feature vectors:

C
⋆ = (c⋆1, c

⋆
2, . . . , c

⋆
n, . . . , c

⋆
N )

C
⋄ = (c⋄1, c

⋄

2, . . . , c
⋄

k, . . . , c
⋄

K)
. (4)

To simplify further explanations, we assume that N ≤ K .

Now, we introduce a dissimilarity measure for contour seg-

ments belonging to different objectsC⋆ andC⋄:

d(c⋆n, c
⋄

k) =
1

M

M
∑

m=1

σm|c
⋆
n,m − c⋄k,m|

K
∑

j=1

|c⋆n,m − c⋄j,m|

, (5)

whereM = 12 is the dimensionality of the feature space and
σm is the weight for each feature achieved in an optimisa-

tion process explained at the end of this section. As one can

see, the dissimilarity value between c
⋆
n and c

⋄

k does not only

depend on these two contour segments. All CS of C⋄ are

taken into consideration, whereby (5) does not fulfil the sym-

metry property d(c⋆n, c
⋄

k) 6= d(c⋄k, c
⋆
n). However, it behaves

equally to human perception. If the dissimilarity of c⋆n to the

neighbours of c⋄k in C
⋄ decreases, d(c⋆n, c

⋄

k) increases. The
values of the dissimilarity function (5) belong to the range

d(c⋆n, c
⋄

k) ∈ [0, 1]which enables their easy conversion to sim-
ilarity values:

s(c⋆n, c
⋄

k) = 1− d(c⋆n, c
⋄

k) . (6)

Using (6) we generate a matrix of similarities between all CS

in C⋆ and in C⋄:

S(C⋆,C⋄) =







s(c⋆1, c
⋄

1) · · · s(c⋆1, c
⋄

K)
...

...
...

s(c⋆N , c⋄1) · · · s(c⋆N , c⋄K)






. (7)

In order to find an optimum match of contour segments from

C
⋆ to CS from C

⋄, we finally apply the Hungarian algo-

rithm [15] for the matrix expressed in (7). The resulting simi-

larity values of the matched contour segments can be denoted

as s1, s2, . . . , sN and the global similarity between the object

contoursC⋆ and C⋄ is calculated as follows:

scontours(C
⋆,C⋄) =

1

N

N
∑

n=1

sn . (8)

Fusion of Skeleton and Contour Similarities: The similar-

ities for two objects determined separately for their skeletons

sskeletons and contours scontours are simply averaged to get

the combined object similarity value:

sobjects =
scontours + sskeletons

2
. (9)

As mentioned above, sskeletons is calculated according to [14].

Context Adaptation: As one can see in (5), the dissimilarity

value for two CS depends on the weights σ1, . . . , σM=12. The

weight of each feature expresses its importance for the over-

all similarity of two CS. Setting the weights for a particular

dataset gives us the opportunity to adapt our algorithm to the

application domain (context). In order to automatically esti-

mate these weights, we apply the Covariance Matrix Adap-

tation Evolution Strategy (CMA-ES) [16]. We start the algo-

rithm with a configuration of equally distributed weights for

all features and find the optimum values for a certain dataset

in an iterative process. In the practical realisation only a sub-

set of each dataset is used for this optimisation, of course.

5. EXPERIMENTS AND RESULTS

Datasets: To evaluate our methodology, we have performed

experiments in an object retrieval scenario using three differ-

ent datasets: (i) Kimia-216 [18] consisting of 216 objects cat-

egories in 18 classes (first row in Figure 3); (ii) MPEG-400, a

subset of theMPEG-7 shape collection [19], consisting of 400

objects categorised in 20 classes (second row in Figure 3);

and (iii) EM-200 [20] containing 200 objects categorised in

10 classes (third row in Figure 3).
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Retrieval Results for Kimia-216 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

PSSGM [14] 216 216 215 216 213 210 210 207 205 191 177

Revised PSSGM [17] 205 208 202 199 200 192 184 167 161 130 96

Our Method (Contours only) 216 215 206 204 200 186 172 163 130 124 107

Our Method (Contours and Skeletons) 216 216 214 213 213 211 204 193 184 175 149

Retrieval Results for MPEG-400 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

PSSGM [14] 380 371 361 351 344 339 332 320 330 309 305

Our Method (Contours only) 375 348 333 325 317 311 300 295 276 275 259

Our Method (Contours and Skeletons) 383 373 364 356 349 343 336 320 330 312 309

Retrieval Results for EM-200 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

Our Method (Contours only) 196 190 190 187 184 182 184 179 173 173 164

Table 1: Experimental comparison of our methodology to the most powerful related algorithm using the Kimia-216 and the

MPEG-400 datasets as well as the proof of applicability of our approach to real world problems using the EM-200 dataset.

Results are summarised as the number of shapes from the same class among the first top 1-11 shapes.

Application Independent Experiments: For Kimia-216 and

MPEG-400, we have run our algorithm in two configuration

modes and compared it to the Path Similarity Skeleton Graph

Matching (PSSGM) [14] which has been, to the best of our

knowledge, outperforming all existing techniques for shape

retrieval. In the first configuration, only contours have been

used for object description, whereby an isolated evaluation of

the new feature space introduced in Section 3) together with

the similarity measure proposed in Section 4 has been pos-

sible. In the second mode, properties of both, contours and

skeletons, have been extracted for object representation. In

both cases, skeletons computed according to [14] have been

used for partitioning the shapes into multiple contour seg-

ments. For each of the shapes used as a query, we have

checked whether the retrieved results are correct, i.e., belong

to the same class as the query. In order to enable quantita-

tive comparison, we have kept the experimental convention

proposed in [14] and considered the 11 best matches for each

query. Results achieved for the Kimia-216 and the MPEG-

400 datasets can be found in Table 1, whereas in [17] the

PSSGM algorithm has been re-evaluated without any prelim-

inary assumptions regarding the object skeletonisation.

The results of the application independent experiments al-

low us to draw three main conclusions. First, our contour

segment descriptor together with the object contour similar-

ity measure is very robust, since it leads to very good shape

retrieval results without using any additional discriminative

properties of the object. Second, the combination of object

contour and skeleton properties significantly improves the ef-

fectivity of the shape retrieval methodology. Third, our new

method combining contour and skeleton properties for object

retrieval outperforms all existing related algorithms.

Environmental Microorganism Classification: EMs and

their species are very important indicators to evaluate envi-

ronmental quality, but their manual classification is very time-

consuming [20, 21]. Thus, automatic analysis techniques for

microscopic images of EMs would be very appreciated by

environmental scientists. We have tested our methodology

for this application using the EM-200 dataset. Since some

EM-200 objects can hardly be skeletonised (e.g., the first two

objects in the third row of Figure 3), we have used the whole

microorganism contours for object description without divid-

ing them into segments. Similar to the contour segments, we

have normalised the orientation of each object by rotating it

so that (i) the straight line connecting two maximally distant

contour points has become vertical and (ii) the majority of

contour points has lain on the right side of this line.

The impressive results for the EM-200 dataset (see Ta-

ble 1) confirm the high descriptive power of our new feature

extraction technique for contours and prove the applicability

of our shape retrieval algorithm to real-world applications.

6. CONCLUSION AND FUTUREWORK

In this paper, we propose a method for 2D shape similarity

measure based on contour segment matching and, after fusion

with a state-of-the-art skeleton-based matching [14], use it for

object retrieval. The most innovative part of our approach

is the robust comparison and matching of contour segments.

The algorithm can easily adapt to a concrete application do-

main by learning weights assigned to different dimensions of

the feature space used for contour description. Its superior

performance has been proven in a meaningful experimental

setup.

In the future we will investigate possibilities of fusing the

discriminative properties of skeletons and contours in an ear-

lier stage of the processing pipeline. Moreover, we will ex-

tend the matching algorithm to objects acquired by a depth

sensor which requires, for example, an evolution of the CS

descriptor to 3D.
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and M. Grzegorzek, “Extended Investigations on Skele-

ton Graph Matching for Object Recognition,” in 8th In-

ternational Conference on Computer Recognition Sys-

tems, R. Burduk, K. Jackowski, M. Kurzynski, M. Woz-

niak, and A. Zolnierek, Eds., Milkow, Poland, May

2013, pp. 371–381, Springer LNCS.

[18] Thomas B. Sebastian, Philip N. Klein, and Benjamin B.

Kimia, “Recognition of shapes by editing their shock

graphs,” PAMI, vol. 26, no. 5, pp. 550–571, may 2004.

[19] L.J. Latecki, R. Lakamper, and T. Eckhardt, “Shape de-

scriptors for non-rigid shapes with a single closed con-

tour,” in CVPR, 2000, vol. 1, pp. 424–429 vol.1.

[20] C. Li, K. Shirahama, M. Grzegorzek, F. Ma, and

B. Zhou, “Classification of environmental microorgan-

isms in microscopic images using shape features and

support vector machines,” in ICIP. September 2013, pp.

2435–2439, IEEE Computer Society.

[21] C. Li, K. Shirahama, J. Czajkowska, M. Grzegorzek,

F. Ma, and B. Zhou, “A multi-stage approach for auto-

matic classification of environmental microorganisms,”

in IPCV. July 2013, p. 364370, CSREA Press.

978-1-4799-5751-4/14/$31.00 ©2014 IEEE ICIP 20142206


