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Abstract Shape similarity estimation of objects is a key component in many com-

puter vision systems. In order to compare two shapes, salient features of a query and

target shape are selected and compared with each other, based on a predefined sim-

ilarity measure. The challenge is to find a meaningful similarity measure that cap-

tures most of the original shape properties. One well performing approach called

Path Similarity Skeleton Graph Matching has been introduced by Bai and Late-

cki. Their idea is to represent and match the objects shape by its interior through

geodesic paths between skeleton end nodes. Thus it is enabled to robustly match

deformable objects. However, insight knowledge about how a similarity measure

works is of great importance to understand the matching procedure. In this paper

we experimentally evaluate our reimplementation of the Path Similarity Skeleton

Graph Matching Algorithm on three 2D shape databases. Furthermore, we outline

in detail the strengths and limitations of the described methods. Additionally, we

explain how the limitations of the existing algorithm can be overcome.
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1 Introduction

Sensory devices have become increasingly affordable. The processing power as well

as storage space have been drastically improved in last decades. The amount of im-

age data is growing rapidly. On the one hand, recording and consumption of such

data has been getting easier. On the other hand, complexity of searching and rea-

soning complicates the access to data [17]. Compared to well-known data types like

plain text documents, images are much more sophisticated to manage. For exam-

ple, searching in semi-structured data like text documents are less complex since

searching conditions can be controlled by syntactic means. However, queries based
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on images have to be implemented by semantic aspects which are not explicitly

known previously. Thus, similarity measures are an ongoing research topic, which

is an important contribution to various applications, like multimedia retrieval and

object recognition [12]. In order to compare two shapes, salient features of both

have to be extracted and compared with each other. Afterwards, shape features of

the query object are compared to those of the target. Therefore, an appropriate and

predefined similarity measure has to be selected. One challenge is to find a meaning-

ful similarity measure that captures most of the original object’s properties. Unlike

other similarity measures, the proposed method in this paper establishes correspon-

dences between skeleton and nodes. The basic concept is proposed in [2], including

a comprehensive evaluation which shows promising results for comparing 2D ob-

jects based on skeletons.

We start by discussing the related work and providing a brief explanation of

the Path Similarity Skeleton Graph Matching algorithm proposed by Bai et al. [2]

(Section 2). In Section 3, we outline some limitations and issues which can appear

within the matching process. Section 4 presents the recognition performance of the

reimplemented algorithm on three 2D shape databases. Finally, we conclude our

work in Section 5.

2 Related Work

Algorithms to analyse objects by shape can be typically categorized by the data rep-

resentation, namely (i) point set representation, (ii) boundary representation, and

(iii) medial representation. The point set representation is an unorganized point

set. One-to-one correspondences between two point sets are established based on

meaningful descriptors [4]. The goal is to find corresponding pairs of points in both

shapes that have the highest similarity. The boundary representations represent an

object by its hull; e.g. snakes [7] are used to match objects. Thereby, one idea is

to measure the matching energy which is needed to match two contours [18]. The

medial representation describes the object by its interior, e.g. skeletons (also called

medial axes or symmetry axes) are the most propagated medial object representa-

tions. They include essential topology and geometrical information [10]. In com-

parison to boundary representation approaches, skeleton-based methods show their

advantages in matching of deformable objects. They are more robust to overlaps, de-

formations or misplaced object parts [14]. However, skeletons are sensitive to noisy

input data, which increases the complexity of the skeletal structure and subsequently

the matching complexity. Therefore, the skeleton’s quality depends on pre- and post-

processing methods, e.g., contour sampling or skeleton pruning. The advantage is

that the matching can be reduced to the graph matching problem. Matching single

salient skeleton points, e.g. junction nodes or end nodes, is a further approach. In

[8, 9] shock trees – a variant of skeletons – are used for shape-comparison based on

an edit-distance algorithm. The edit distance is computed by traversing the rooted

shock tree while edit operations are being applied to the traversed edges. All edit
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operations are associated to a predefined edit cost. The idea is to transform one

skeleton branch into in opponent branch. Thus, the similarity between two shapes

is measured by summing up the cost of deformations between the shock transitions.

Many matching approaches enforce one-to-one correspondences, but noisy image

data deal with the problem that one-to-one matchings are not always possible. In

[5, 6] the authors present a technique for many-to-many matching of medial axis

graphs. The idea is to embed the nodes of two graphs into a fixed-dimension Euclid-

ian space and using the Earth Movers Distance to enable a many-to-many matching

between nodes of the graphs.

2.1 Path Similarity Skeleton Graph Matching

Following contents provide a description of the Path Similarity Skeleton Graph

Matching algorithm, proposed by Bai and Latecki in [2]. Our aim is to provide a

deep understanding of the concept in order to explain the investigated limitations

of this algorithm in Section 3. The algorithm can be divided into three major parts:

(i) getting a compact skeleton representation, (ii) computing the matching costs be-

tween the end points, (iii) repeating the latter procedure for all combinations of end

nodes. The final matching of the skeleton end nodes is performed by applying the

Hungarian algorithm.

2.1.1 Skeleton Representation

A key concept is the use of information about skeleton paths. The skeleton repre-

sentation incorporates the main contour information. The example of the two bird

shapes in Fig. 1a-b will guide through the explanations. A skeleton path p(vm,vn) is
defined as the shortest path between a pair of end nodes vm and vn passing the skele-

tal structure (see Fig. 1c). The skeleton paths are found by constructing a weighted

skeleton graph. The edge weight is defined by the length of the corresponding skele-

ton branch. Hence, it is possible to apply a shortest path algorithm (e.g. Dijkstra’s

algorithm). Additionally, information about the object contour is included. Thus, a

skeleton path p(vm,vn) is sampled with M equidistant points. Afterwards, all radii

of maximal disks, measured at each sampled point t, are noted within a path vector

(cf. Eq. 1 and Fig. 1d):

Rm,n = (Rm,n(t))t=1,2,...,M = (r1,r2, . . . ,rM) , (1)

In [2] the distance of each sampled skeleton point t to its feature point is ap-

proximated by a distance transform DT (t), in our case a Euclidian distance map is

computed. Afterwards, the distance is normalized to make the method invariant to

scale. Finally, the distances are approximated and normalized as follows:

Rm,n =
DT (t)

1
N0

∑
N0
i=1DT (si)

, (2)
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Fig. 1: (a-b) Example for two skeletons S and S′ to be matched. (c) The complete skeleton (top

left) and all skeleton paths emanating of one example end node. (d) Sampling of a skeleton path.

The sampling points are indicated with white dots. The distance to their feature points is indicated

by the black circles. For the skeleton path representation, the normalized distance of the skeleton

points to their feature points is measured and noted in the skeleton path vector.

where N0 is the number of pixels in the original shape and si(i= 1,2, ...,N0) varies
over all N0 pixels within the shape. The ordered list ofM distance values is obtained

for each skeleton path. All distance values are noted in the path vector (cf. Eq. 1).

2.1.2 Dissimilarity between End Nodes

In order to compute the matching costs for two end nodes, a similarity measure is

necessary. Therefore, the dissimilarity of two skeleton paths is given by the path

distance shown in (Eq. 3) (where ri and r′i are radii of maximal disks of the path

vectors R and R′, l and l′ are the length of the skeleton paths p(u,v) and p(u′,v′)).
The influence of the path length is weighted by the factor α ∈ R

+. To make the

approach invariant to scale, the lengths are normalized. The assumption is that sim-

ilar skeleton paths have consecutive skeleton points with similar radii of maximal,

inscribed discs.

pd(p(u,v), p(u′,v′)) =
M

∑
i=1

(ri− r′i)
2

ri+ r′i
+α

(l− l′)2

l+ l′
(3)

All path distances for one pair of end nodes are combined in one path distance

matrix (PDM) (Eq. 4). Two skeleton graphs G with K+ 1 end nodes and G′ with

N+ 1 end nodes are matched with K ≤ N. The end nodes vi and v
′
j of G and G′ are

ordered by traversing the object contours in clockwise direction. This leads to an
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ordered list of end nodes: {vi0,vi1, . . . ,viK} for G and {v′j0,v
′
j1, . . . ,v

′
jN} for G

′.

PDM(vi0,v
′
j0)=





pd(p(vi0 ,vi1), p(v
′
j0,v

′
j1)) · · · pd(p(vi0 ,vi1), p(v

′
j0 ,v

′
jN))

.

.

.
.
.
.

.

.

.

pd(p(vi0,viK), p(v
′
j0,v

′
j1)) · · · pd(p(vi0 ,viK), p(v

′
j0,v

′
jN))



 (4)

To estimate a dissimilarity value for a pair of end nodes vi and v
′
j, the PDM is ap-

plied to the Optimal Subsequence Bijection (OSB) [11]. By using this approach, the

problem of estimating the similarity of two end nodes is reduced to elastic matching

of time series. One main advantage of using OSB is that outliers within the path dis-

tance matrix can be easily skipped. The PDM is computed for every combination

of end nodes in two skeleton graphs and afterwards applied to the OSB function:

c(vi,v
′
j) = OSB(PDM(vi,v

′
j)). Subsequently, the resulting cost matrix C (cf. eq. 5)

is used as input for the Hungarian algorithm. Hence, the matching problem is re-

duced to the classic assignment problem in a bipartite graph.

C(G,G′)=









c(v0,v
′
0) c(v0,v

′
1) . . . c(v0,v

′
N)

c(v1,v
′
0) c(v1,v

′
1) . . . c(v1,v

′
N)

.

.

.
.
.
.

.

.

.

c(vK ,v
′
0) c(vK ,v

′
1) . . . c(vK ,v

′
N)









(5)

3 Investigations on the Path Similarity Skeleton Graph

Matching Algorithm

The following investigations are based on a reimplementation of the Path Similarity

Skeleton Graph Matching algorithm proposed in [2]. Deduced from our experience,

we detected three major limitations, which can occur in special matching cases:

flipped images, 1-to-1 matching of the end nodes, and spurious skeleton branches.

3.1 Flipped Images

The cheapest path through a given path distance matrix (PDM) is estimated by the

OSB-Function. It is assumed that the cheapest path for two corresponding end nodes

goes from the upper left corner to the lower right corner. By traversing the matrix

with the OSB function, it is not allowed to go backwards, neither in the rows nor

in the columns. In the case of matching two similar shapes which head towards

different directions, the correct matching costs cannot be estimated with the OSB

function (cf. Fig. 2a). In these cases, the actual cheapest path through the matrix

is flipped and goes from the upper right corner to the lower left corner (cf. Eq. 6).

This means that the OSB function is not able to estimate a reliable indicator for the

similarity.



6 J. Hedrich, C. Yang, C. Feinen, S. Schäfer, D. Paulus, and M. Grzegorzek

PDM(vi0,v
′
j0)=









. . . 7 5 8 0

. . . 2 3 0 8

. . . 5 0 3 5

. . . 0 5 2 7

. . . . . . . . . . . .









(6)

As a solution, we apply the OSB function twice: once for the original image, and

once with one image flipped horizontally. From the resulting two match lists, the

one with lower matching costs will be chosen as the real matching. In the most

cases this works quite well. The minimal matching cost value is taken as similarity

value. However, this strategy can fail in the case of strong dissimilarities between

two shapes. Only, a more complex strategy which compares contour partitions in

detail can overcome this failure. For example, the shapes in Fig. 2a are oriented in

opposite directions, but the matching costs for the second run with one of the images

flipped leads to lower matching costs than the first run. Thus, in the algorithm the

two shapes are assumed to be oriented in the same direction, which in the end leads

to an unsatisfying matching.

3.2 1-to-1 Matching

1-to-1 matching of end nodes is another issue which we identified. It is not always

possible to assign a correct matching partner to each end node. For example Fig. 2b

depicts an acceptable matching, but both skeletons have one additional end node

that has no matching partner. Within the Hungarian algorithm each end node has

to be assigned to one partner, even though they do not correspond. This is not only

a limitation of this particular algorithm, but a problem of all matching algorithms

that reduce the matching problem to a 1-to-1 matching in a bipartite graph. Using

a different approach could be a solution to this problem. For example, the Earth

Mover’s Distance (EMD) as used in [13] also allows partial matchings. This could

be a solution to better deal with noisy skeleton data.

(a) Flipped shapes (b) 1-to-1 matching

Fig. 2: a) If one shape is flipped, it is likly that the method fails to determine. b) 1-to-1 match-

ing is not always possible. In this example, all matchings have been found correctly, but the two

remaining end nodes with no matching partner in the other skeleton are matched.
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3.3 Spurious Skeleton Branches

The Path Similarity Skeleton Graph Matching algorithm requires perfectly regular-

ized skeletons, where each skeleton branch represents a significant visual part of the

shape. Since each end node has to be assigned to an 1-to-1 matching partner, spuri-

ous skeleton branches have profound negative impact on the matching result. Fig. 3a

illustrates wrong assignments between two elephant shapes, which are caused by a

spurious branch in the tail of the left elephant (see Fig. 3b). After manually remov-

ing this branch the number of correct correspondences has significantly increased

(cf. Fig. 3c). Thus, one has to make sure that the input skeletons do not contain

spurious branches.

(a) Bad matching caused by spurious branches (b) Zoom in

(c) Matching after the spurious branch has been re-

moved

Fig. 3: One spurious branch can have a high impact on the matching result

4 Recognition Performance

Based on our reimplementation, we used several shape databases like Aslan and

Tari [1], kimia-99 [15] and kimia-216 [16] to evaluate the recognition performance.

The skeleton of each shape is computed by the Discrete Curve Evolution (DCE)

algorithm [3]1, with the parameters ρ = 4, T1 = 1 and number vertice = 15. The

parameters for the similarity measurement were M = 50 and α = 40. All shapes

from the databases has been used as a query. In order to rate the retrieval, the average

precision is computed and for each query the maximal number of shapes within the

retrieval class is returned. For each query on the Aslan and Tari database, three

shapes are returned, which leads to a average precision of 0.93. For each query on

the kimia-99 database 9 shapes are returned, which results in an average precision of

1 available at https://sites.google.com/site/xiangbai/BaiSkeletonPruningDCE.zip
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Fig. 4: Average precision and recall development in the kimia216 database with increasing number

of result documents.

0.84. In the kimia-216 database 11 shapes are returned for each query, the average

precision is 0.81 (cf. Fig. 4). Table 1 summarizes the number of all correct shapes

for the first eleven retrieval results from the kima216 database in comparison to the

values listed in the original paper. Obviously, the results are not as good as in the

original paper. It is assumed that the input skeletons play a significant role. Several

skeletons used in the experiments contain spurious branches, which had a profound

impact on the matching quality and led to distorted overall similarity values. This

effect has been observed in many of the query results. However, the originally used

parameters for the DCE algorithm are not reported.

Table 1: Summary of correct shapes in the 1st, 2nd,.. retrieval result.

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

Original paper 216 216 215 216 213 210 210 207 205 191 177

Our results 210 208 203 202 200 192 186 167 161 130 96

To verify this assumption, further experimentswere performed on the more prob-

lematic classes of the Kima-216 database. This time, the skeletons in the database

were pruned manually so that each skeleton branch represents a significant visual

part of the original shape. As the significant parts of shapes of the same class should

be quite similar, the skeletons get more comparable. Using the manually pruned

skeletons leads to better results in the performed queries. For example, the average

precision for the queries from the ’bird’-class went up from 0.69 to 0.81, the aver-

age precision for the queries from the ’camel’ class went up from 0.63 to 0.73 (see

table 2). Additionally, it can be observed that the average precision value for the

Kimia-99 and Kimia-216 database is worse than for the Aslan and Tari database.

The reason for this partly lies in the composition of data in both databases. In the

Aslan and Tari database, the algorithm’s performance for non-rigid shapes is mainly

evaluated. Parts of the shapes are bent and the shapes are similar to each other within
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a class. The main challenge in the Kimia-99 database is that several shapes are oc-

cluded.

Table 2: Example queries on the Kimia-216 database. In the left column, the query shape is shown.

From left to right, the eight most similar shapes in the database are shown. The similarity to the

query drops from left to right.

Query 1st 2nd 3rd 4th 5th 6th 7th 8th

5 Conclusion

In this paper we reimplemented the Path Similarity Skeleton Graph Matching algo-

rithm [2] and performed a reevaluation on three shape databases (Aslan and Tari,

kimia-99 and kimia-216). Additionally, we reported the limitations of the algorithm

in detail for the first time. A fundamental understanding is necessary to understand

upcoming issues during a matching process. The algorithm showed its advantages

when dealing with non-rigid objects and articulated joints. An average precision

of 0.93 (0.98 with manually pruned skeletons, respectively) for the Aslan and Tari

database shows that shape deformations do not affect the skeleton’s topology and

the use of path radii has no impact on the matching results. The experiments with

the Kimia-99 and Kimia-216 database also showed acceptable results with an av-

erage precision of 0.84 and 0.81, respectively. In this paper, we were not able to

reproduce the excellent recognition results of the original paper, due to the lack of

the not reported parameters for the skeletonization method. However, problems in

the recognition performance occurred when shapes of different classes were simi-

lar. In addition, overlaps have a negative impact on the recognition results. A severe

limitation of the algorithm is its requirement of optimal skeletons. The experiments

showed that spurious branches in one of the skeletons lead to distorted matching re-

sults in several cases. Consequently, this affects the object recognition performance

when using the described matching algorithm in the retrieval system. In the future,

we will investigate strategies how to deal with flipped images and pruning algo-

rithms for skeletons to reduce the number of spurious branches. Furthermore, this

matching algorithm could be used as an initial similarity measurement in a hierarchi-

cal and more complex object recognition system. Another challenge is the rapidly

growing amount of 3D data. An extension of the Path Similarity Skeleton Graph

Matching method towards the third dimension would be a great contribution to the

object recognition community.
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